3.123 \(\int \frac {(A+C \cos ^2(c+d x)) \sec (c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=162 \[ -\frac {(43 A-5 C) \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{16 \sqrt {2} a^{5/2} d}+\frac {2 A \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{a^{5/2} d}-\frac {(11 A-5 C) \sin (c+d x)}{16 a d (a \cos (c+d x)+a)^{3/2}}-\frac {(A+C) \sin (c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}} \]

[Out]

2*A*arctanh(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))/a^(5/2)/d-1/4*(A+C)*sin(d*x+c)/d/(a+a*cos(d*x+c))^(5/2)
-1/16*(11*A-5*C)*sin(d*x+c)/a/d/(a+a*cos(d*x+c))^(3/2)-1/32*(43*A-5*C)*arctanh(1/2*sin(d*x+c)*a^(1/2)*2^(1/2)/
(a+a*cos(d*x+c))^(1/2))/a^(5/2)/d*2^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.48, antiderivative size = 162, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {3042, 2978, 2985, 2649, 206, 2773} \[ -\frac {(43 A-5 C) \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{16 \sqrt {2} a^{5/2} d}+\frac {2 A \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{a^{5/2} d}-\frac {(11 A-5 C) \sin (c+d x)}{16 a d (a \cos (c+d x)+a)^{3/2}}-\frac {(A+C) \sin (c+d x)}{4 d (a \cos (c+d x)+a)^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[((A + C*Cos[c + d*x]^2)*Sec[c + d*x])/(a + a*Cos[c + d*x])^(5/2),x]

[Out]

(2*A*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(a^(5/2)*d) - ((43*A - 5*C)*ArcTanh[(Sqrt[a]*Si
n[c + d*x])/(Sqrt[2]*Sqrt[a + a*Cos[c + d*x]])])/(16*Sqrt[2]*a^(5/2)*d) - ((A + C)*Sin[c + d*x])/(4*d*(a + a*C
os[c + d*x])^(5/2)) - ((11*A - 5*C)*Sin[c + d*x])/(16*a*d*(a + a*Cos[c + d*x])^(3/2))

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2649

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, (b*C
os[c + d*x])/Sqrt[a + b*Sin[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2773

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(-2*
b)/f, Subst[Int[1/(b*c + a*d - d*x^2), x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2978

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*
x])^(n + 1))/(a*f*(2*m + 1)*(b*c - a*d)), x] + Dist[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m +
 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*
(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c,
0])

Rule 2985

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])), x_Symbol] :> Dist[(A*b - a*B)/(b*c - a*d), Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[(
B*c - A*d)/(b*c - a*d), Int[Sqrt[a + b*Sin[e + f*x]]/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f,
A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3042

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(a*(A + C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x
])^(n + 1))/(f*(b*c - a*d)*(2*m + 1)), x] + Dist[1/(b*(b*c - a*d)*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)
*(c + d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) - b*d*(2*m + n + 2)) - C*(a*c*m + b*d*(n + 1)) + (a*A*d*(m + n + 2
) + C*(b*c*(2*m + 1) - a*d*(m - n - 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] &&
NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)]

Rubi steps

\begin {align*} \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec (c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx &=-\frac {(A+C) \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}+\frac {\int \frac {\left (4 a A-\frac {1}{2} a (3 A-5 C) \cos (c+d x)\right ) \sec (c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx}{4 a^2}\\ &=-\frac {(A+C) \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}-\frac {(11 A-5 C) \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}}+\frac {\int \frac {\left (8 a^2 A-\frac {1}{4} a^2 (11 A-5 C) \cos (c+d x)\right ) \sec (c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx}{8 a^4}\\ &=-\frac {(A+C) \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}-\frac {(11 A-5 C) \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}}+\frac {A \int \sqrt {a+a \cos (c+d x)} \sec (c+d x) \, dx}{a^3}-\frac {(43 A-5 C) \int \frac {1}{\sqrt {a+a \cos (c+d x)}} \, dx}{32 a^2}\\ &=-\frac {(A+C) \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}-\frac {(11 A-5 C) \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}}-\frac {(2 A) \operatorname {Subst}\left (\int \frac {1}{a-x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{a^2 d}+\frac {(43 A-5 C) \operatorname {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{16 a^2 d}\\ &=\frac {2 A \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{a^{5/2} d}-\frac {(43 A-5 C) \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \cos (c+d x)}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {(A+C) \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}-\frac {(11 A-5 C) \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.71, size = 124, normalized size = 0.77 \[ \frac {\tan \left (\frac {1}{2} (c+d x)\right ) ((5 C-11 A) \cos (c+d x)-15 A+C)-2 (43 A-5 C) \cos ^3\left (\frac {1}{2} (c+d x)\right ) \tanh ^{-1}\left (\sin \left (\frac {1}{2} (c+d x)\right )\right )+64 \sqrt {2} A \cos ^3\left (\frac {1}{2} (c+d x)\right ) \tanh ^{-1}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right )}{16 a d (a (\cos (c+d x)+1))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[((A + C*Cos[c + d*x]^2)*Sec[c + d*x])/(a + a*Cos[c + d*x])^(5/2),x]

[Out]

(-2*(43*A - 5*C)*ArcTanh[Sin[(c + d*x)/2]]*Cos[(c + d*x)/2]^3 + 64*Sqrt[2]*A*ArcTanh[Sqrt[2]*Sin[(c + d*x)/2]]
*Cos[(c + d*x)/2]^3 + (-15*A + C + (-11*A + 5*C)*Cos[c + d*x])*Tan[(c + d*x)/2])/(16*a*d*(a*(1 + Cos[c + d*x])
)^(3/2))

________________________________________________________________________________________

fricas [B]  time = 0.45, size = 339, normalized size = 2.09 \[ -\frac {\sqrt {2} {\left ({\left (43 \, A - 5 \, C\right )} \cos \left (d x + c\right )^{3} + 3 \, {\left (43 \, A - 5 \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (43 \, A - 5 \, C\right )} \cos \left (d x + c\right ) + 43 \, A - 5 \, C\right )} \sqrt {a} \log \left (-\frac {a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) - 32 \, {\left (A \cos \left (d x + c\right )^{3} + 3 \, A \cos \left (d x + c\right )^{2} + 3 \, A \cos \left (d x + c\right ) + A\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} {\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + 4 \, {\left ({\left (11 \, A - 5 \, C\right )} \cos \left (d x + c\right ) + 15 \, A - C\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{64 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)/(a+a*cos(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

-1/64*(sqrt(2)*((43*A - 5*C)*cos(d*x + c)^3 + 3*(43*A - 5*C)*cos(d*x + c)^2 + 3*(43*A - 5*C)*cos(d*x + c) + 43
*A - 5*C)*sqrt(a)*log(-(a*cos(d*x + c)^2 - 2*sqrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(a)*sin(d*x + c) - 2*a*cos(d
*x + c) - 3*a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) - 32*(A*cos(d*x + c)^3 + 3*A*cos(d*x + c)^2 + 3*A*cos(d*
x + c) + A)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*sqrt(a*cos(d*x + c) + a)*sqrt(a)*(cos(d*x +
 c) - 2)*sin(d*x + c) + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)) + 4*((11*A - 5*C)*cos(d*x + c) + 15*A - C)*sqr
t(a*cos(d*x + c) + a)*sin(d*x + c))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^
3*d)

________________________________________________________________________________________

giac [A]  time = 3.86, size = 249, normalized size = 1.54 \[ -\frac {2 \, \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} {\left (\frac {2 \, \sqrt {2} {\left (A a^{5} + C a^{5}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}}{a^{8}} + \frac {\sqrt {2} {\left (13 \, A a^{5} - 3 \, C a^{5}\right )}}{a^{8}}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \frac {\sqrt {2} {\left (43 \, A \sqrt {a} - 5 \, C \sqrt {a}\right )} \log \left ({\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2}\right )}{a^{3}} - \frac {64 \, A \log \left ({\left | {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} - a {\left (2 \, \sqrt {2} + 3\right )} \right |}\right )}{a^{\frac {5}{2}}} + \frac {64 \, A \log \left ({\left | {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} + a {\left (2 \, \sqrt {2} - 3\right )} \right |}\right )}{a^{\frac {5}{2}}}}{64 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)/(a+a*cos(d*x+c))^(5/2),x, algorithm="giac")

[Out]

-1/64*(2*sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a)*(2*sqrt(2)*(A*a^5 + C*a^5)*tan(1/2*d*x + 1/2*c)^2/a^8 + sqrt(2)*(1
3*A*a^5 - 3*C*a^5)/a^8)*tan(1/2*d*x + 1/2*c) - sqrt(2)*(43*A*sqrt(a) - 5*C*sqrt(a))*log((sqrt(a)*tan(1/2*d*x +
 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2)/a^3 - 64*A*log(abs((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan
(1/2*d*x + 1/2*c)^2 + a))^2 - a*(2*sqrt(2) + 3)))/a^(5/2) + 64*A*log(abs((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(
a*tan(1/2*d*x + 1/2*c)^2 + a))^2 + a*(2*sqrt(2) - 3)))/a^(5/2))/d

________________________________________________________________________________________

maple [B]  time = 2.51, size = 445, normalized size = 2.75 \[ -\frac {\sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (43 A \ln \left (\frac {4 \sqrt {a}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+4 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) \sqrt {2}\, \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a -5 C \sqrt {2}\, \ln \left (\frac {4 \sqrt {a}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+4 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a -32 A \ln \left (\frac {4 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}+4 a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+8 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right ) \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a -32 A \ln \left (-\frac {4 \left (a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}-2 a \right )}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}}\right ) \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +11 A \sqrt {a}\, \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-5 C \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}\, \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+2 A \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}+2 C \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}\right )}{32 a^{\frac {7}{2}} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+C*cos(d*x+c)^2)*sec(d*x+c)/(a+a*cos(d*x+c))^(5/2),x)

[Out]

-1/32/a^(7/2)/cos(1/2*d*x+1/2*c)^3*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(43*A*ln(2*(2*a^(1/2)*(a*sin(1/2*d*x+1/2*c)^
2)^(1/2)+2*a)/cos(1/2*d*x+1/2*c))*2^(1/2)*cos(1/2*d*x+1/2*c)^4*a-5*C*2^(1/2)*ln(2*(2*a^(1/2)*(a*sin(1/2*d*x+1/
2*c)^2)^(1/2)+2*a)/cos(1/2*d*x+1/2*c))*cos(1/2*d*x+1/2*c)^4*a-32*A*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2
)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*cos(1/2*d*x+1/2*c)^4*a-32*A*ln(-4*
(a*2^(1/2)*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a)/(2*cos(1/2*d*x+1/2*c)-2^(1/2
)))*cos(1/2*d*x+1/2*c)^4*a+11*A*a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*cos(1/2*d*x+1/2*c)^2-5*C*2^(1/2
)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)*cos(1/2*d*x+1/2*c)^2+2*A*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/
2)+2*C*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2))/sin(1/2*d*x+1/2*c)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d

________________________________________________________________________________________

maxima [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)/(a+a*cos(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {C\,{\cos \left (c+d\,x\right )}^2+A}{\cos \left (c+d\,x\right )\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{5/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + C*cos(c + d*x)^2)/(cos(c + d*x)*(a + a*cos(c + d*x))^(5/2)),x)

[Out]

int((A + C*cos(c + d*x)^2)/(cos(c + d*x)*(a + a*cos(c + d*x))^(5/2)), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)**2)*sec(d*x+c)/(a+a*cos(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________